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ABSTRACT Facilitating citizens with accurate traffic flow prediction increases the quality of life. Roadside
sensors and devices are used to capture live streams of huge data and the Internet of Things (IoT) is becoming
popular for the deployment of effective Intelligent Transportation Systems (ITS). Traffic flow prediction
from the live datastreams require building a data-driven model. This is a challenging task and has attracted
researchers for better interpretation of the traffic characteristics. The core problem in traffic prediction is
modeling a diversity of traffic trends and unpredictable flow variations with temporal dependencies. Initially,
statistical and shallow neural network models were applied to some extent. Recently, deep learning has come
up with proven and promising outcomes. Gated Recurrent Unit (GRU) is a variation of recurrent neural
networks used effectively for traffic flow prediction. Like other deep networks, GRU uses hyperparameters
and a slidingwindow time-stepsmechanism to prepare and tune themodel. Better tuning for hyperparameters
and search for optimal window size is a tedious process. In this research work, we present an algorithm for
hyperparameters tuning along with sliding window steps optimization. Results obtained on a real-time public
traffic dataset show a higher capability of the proposed method to reduce the error and an average gain of
the optimized model over the untuned network is 4.5%. Furthermore, we apply the optimal hyperparameters
obtained in the experiment to other deep learning models and present that our approach improves prediction
accuracy and stability.

INDEX TERMS Traffic flow prediction, deep learning, gated recurrent unit, hyperparameters optimization.

I. INTRODUCTION
Intelligent Transportation System (ITS) is an essential ele-
ment of smart cities. ITS not only provides real time traffic
characteristics but also predicts short-term traffic flow. Traf-
fic prediction is useful for route diversions and congestion
control. However, due to the stochastic nature of transporta-
tion data, time-series prediction based on huge and real-time
data provided by road sensors is a challenging task. These
challenges are noticed in data representation, model vali-
dation, optimal prediction framework building, estimation
time-lag ahead, and the effect of external factors on traffic
models. Various techniques are proposed by scientists to
validate traffic predictions [1]-[3]. Classic mathematical and
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statistical approachesmainly apply linear models and shallow
machine learning techniques to estimate traffic characteris-
tics. Those are not accurate because of unpredictable traffic
flow variations which are essentially nonlinear and random
in nature.

It is trivial to anticipate the usual traffic congestion ahead
of time. For example, it is easy to anticipate that the traffic
flow is generally higher during day timings as compared to
midnight intervals. However, it requires significant effort to
predict the traffic flow to a given degree of accuracy in a
given time interval. Such statistical models use the structured
expressions which are predetermined and make assumptions
about the variables. These assumptions sometimes turn out to
be correct resulting in correct prediction, and sometimes per-
form badly. The core issue lies with the stronger assumptions
which are incompatible with unpredictable and highly variant
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traffic data. The data-driven deep neural models are popular
to predict traffic flows. Recurrent Neural Networks (RNN)
belong to a type of deep learning model that can memorize
historical input data and use it to improve prediction accuracy.
RNN can remember historical features in temporal sequential
data. However, it leads to a famous vanishing gradient issue
and loses the remembrance of longer sequences over time [4].
To overcome this issue, researchers suggested variations of
RNN. Long-short Term Memory (LSTM) and Gated Recur-
rent Unit (GRU) are two widely used variations of the recur-
rent network. A GRU model was originally proposed by Cho
et al. [5] that aims to solve the vanishing gradient problem
which appears in a standard recurrent neural network.

We aim to fine-tune the existing GRU based deep neural
networks to increase their accuracy of traffic flow predic-
tions. These tuned sets of configuration values for the neural
network are called hyperparameters. In this paper, we search
these hyperparameters for GRU deep neural network and find
the values of these hyperparameters to improve its prediction
accuracy. Our proposed method improves hyperparameters
and sliding window steps and further evaluated the prediction
accuracy and stability. We also generalize the search results
of this approach, applying the same hyperparameters to vari-
ous neural network architectures by replacing the model and
perform analysis, for example, as discussed in [6]. The main
contributions of this paper are described below:

1) We propose a search mechanism for recurrent neural
network that results in obtaining network hyperparam-
eters, optimized number of sliding window steps ahead
and improve the prediction accuracy by reducing the
error in traffic flow prediction.

2) Once refined time-lags and hyper parameter set is
obtained by applying the proposed mechanism, this
study further evaluates and compares the accuracy of
GRU with various deep learning techniques, for exam-
ple, bidirectional, stacked and convolutional variants of
LSTM for traffic prediction.

3) Experimental Result applied on a public traffic dataset
shows an improved accuracy with the proposed method
by applying a search mechanism to fine-tune the neural
network models.

The rest of the paper is organized as follows. Section II
states the related background of the models for traffic flow
prediction; Section III presents the proposed model for GRU
network tuning and describes deep learning models used for
traffic prediction. The experimental design on a real-time traf-
fic database and experimental results are given in Section IV
and finally, the conclusion and future work are described in
Section V.

II. RELATED BACKGROUND
Traffic flow prediction models are generally divided into
two broad classifications i.e., parametric models and
non-parametric models [7].

Parametric models refer to the models where the struc-
tured expression is predetermined making the assumptions
about the variable [8]. A parametric algorithm may per-
form better if the assumptions turn out to be correct, oth-
erwise, it performs badly. Among parametric models the
linear regression, Auto-regressive Integrated Moving Aver-
age (ARIMA) model [9], Kalman Filtering (KF) model, and
maximum likelihood estimate [10] are discussed. Although
the parametric models were applied in the past for traf-
fic characteristics description, they are inflexible. Moreover,
due to the non-linearity and variations in traffic data, they
do not predict the traffic flow effectively [11]. This is by
virtue of Artificial Intelligence (AI) approaches that they
outperform the classical statistical models and the relevant
modeling constraints due to the superior capability of min-
ing information from messy and multi-dimensional traffic
data.

To mitigate these issues, scientists have researched predic-
tion models. These are the non-parametric models that use a
flexible number of parameters. These parameters often grow
in numbers as the model learns from more data. Therefore,
the non-parametric algorithms are computationally slower.
On the other hand, the non-parametric models make fewer
assumptions about the data. The protocols falling under this
category are; Support Vector Machine (SVM) [13], K-nearest
Neighbor (KNN) [14], and Neural Networks [15], and many
more.

More recently, deep learning is introduced to traffic predic-
tion and is widely accepted as a better approach for describing
traffic systems. In contrast to traditional shallow structures,
deep learning models use multi-layer nonlinear structures
to describe distributed and hierarchical features for more
complex traffic flow data. Some researchers have proposed
clustering approaches (such as Deep Belief Networks (DBN)
for traffic flow prediction [16]. Li et al. [17] proposed
an intelligent swarm-based model to optimize parameters in
DBN and enhance its multiple steps ahead prediction capa-
bility. Reference [18] proposed an attention based model like
Stacked Auto-Encoder (SAE) which outperformed Random
Walk (RW), Feed-Forward Neural Networks (FFNN), and
Radial Basis Function (RBF). These models are dense where
every neuron of the previously hidden layer is connected to
each neuron of the next layer. There are no assumptions about
the features in the fully-connected neural network models.
Thus, fully-connected networks extract features/ characteris-
tics from the dataset automatically [19].

It is observed that RNN and its variants are good in cap-
turing the stochastic and nonlinear variations over time in
traffic data. However, RNN leads to a vanishing gradient
problem and doesn’t predict longer sequences due to short
memory remembrance. Further, RNN does not deal with spe-
cial features where the Convolutional Neural Network (CNN)
outperforms. Also, with an increase in time intervals, RNN
tends to lose the ability to remember far feature information.
Moreover, as training the RNN model requires a predeter-
mined size of sliding window data, it is difficult to obtain
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TABLE 1. Systematic literature review table: a comparison of various models used for data-driven traffic-flow prediction. Each row is specified with the
objective. domain, method and measurement metrics used. Abbreviations: Pa, parametric model; NPa, non-parametric model; DL, deep learning model;
ARIMA, autoregressive integrated moving average; VLSTM, vanilla long short-term memory; BLSTM, bidirectional LSTM; CLSTM, a convolutional LSTM
network.

the optimal parameter size of the window automatically in
practice.

A GRU architecture was proposed as a variation of RNN
by Cho et al. [5]. GRU aims to solve the vanishing gradient
problem. GRU were successfully applied to the transporta-
tion problem, specially traffic-flow estimation a few steps
ahead and results showed that the models are superior to
SAE, FFNN and SVM [21]. GRU model is very similar to
LSTM and both can produce equally excellent results. They
can confront the vanishing gradient and over-fitting regarded
as well-known problems with the traditional RNNs. GRU’s
internal structure is simpler and more rapid to train than
LSTM. It has two control gates (reset and update gate) to
overcome the vanishing gradient problem in RNN. Conse-
quently, GRU requires lesser computations steps to update
its latent state. The update gate helps to determine the past
information from the time series that need to pass to the
future. Keeping such information helps eliminate the risk
of vanishing explosion. Reset gate, however, determines to
decide how much of the past information to forget.

Researchers proposed that external factors can play a
significant role in traffic flow predictions. Some examples
of external factors are; weather conditions, changing pop-
ulations, and social-economic events. Though traffic flows

possess identical temporal patterns during day and night inter-
vals, external factors may severely influence these patterns.

Mou et al. [23] argued that existing LSTM studies lack
the impact of temporal features to be exploited for traffic
prediction. They proposed a temporal information enhancing
variant of LSTM (T-LSTM) to forecast the traffic speed of
a single road section. However, there is a special and tem-
poral correlation that exits in time series traffic flow data,
when captured through the Roadside Units (RSU), which
transmit real-timemeasurements to the ITS system. T-LSTM,
extending only temporal dependency lacks spatial depen-
dency. We always need a time-efficient prediction model
especially during the rush hours when the traffic conditions
change rapidly.

Some authors applied SVM to find the spatio-temporal
correlation for traffic flow prediction. Reference [32] man-
ages Adaptive Multi-Kernel SVM with Spatial–Temporal
Correlation (AMSVM-STC) for short-term traffic prediction.
It attempts to find the nonlinearity and randomness of the traf-
fic flow at a Point of Interest (POI) mainly using probabilistic
models. The author claims its model outperforms existing
models but did not include the comparisons with deep
learning models. Reference [33] proposed a STANN model,
inspired by the idea of attention-based models, the spatial
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FIGURE 1. Traffic flow training & validation optimization framework for traffic flow detection with GRU neural network.

and temporal attentions are proposed to be used for traffic
flow prediction. The model is providing promising results for
traffic flow prediction.

As already mentioned, CNN is another popular traffic flow
prediction model that uses strong spatial features modeling
ability [24]. However, it lags in mapping temporal features.
Since RNN is better at exploiting temporal features, some
researchers have proposedmixed CNNwith RNN to decrease
prediction error. The CNN-RNN model uses historical data
for temporal characteristics and imaging data to map special
characteristics. It then exploits spatio-temporal features of the
input sequence [19]. We included the CNN-LSTM model in
our research work to compare the performance and accuracy
with GRU after parameters tuning.

Kong et. al described the emerging aspect of real-time
traffic flow data as big data [25]. The intelligent transporta-
tion system (ITS) is gradually becoming big data-driven sys-
tem with increased heterogeneity, volume, and complexity of
IoT data samples [20], [21]. ITS prime goal is to build an
advanced, well-informed, and smarter use of transportation
network systems for citizens and authorities. A directive of
the European Union defined ITS as systems in which infor-
mation and communication technologies are applied in the
field of road transport, including infrastructure, vehicles, and
users, and in traffic management and mobility management,
as well as for interfaces with other modes of transport [34].
ITS technologies are being adopted widely due to two rea-
sons: to increase the capacity of busy roads and reduce jour-
ney times [35].

Our work utilizes GRU for determination of optimal
time-lags and hyperparameters values for traffic flow pre-
diction. GRU has stronger applicability, like LSTM, with a
simpler network configuration model [22]. Our approach also
solves the already mentioned problems with RNN. From the
literature survey, we concluded that:

1) GRU is applied for the first time for traffic prediction
in 2016 [31] and observed that GRU performs a little
better than LSTM by converging faster.

2) The motivation observed for exploiting GRU neural
network: ‘‘If trained carefully with the right param-
eters/ hyperparameters, the prediction will be signifi-
cantly accurate in complex scenarios’’.

We presented a systematic survey in Table. 1 to compare
the efforts that evolve with various relevant models for traffic
prediction. We are presenting an effort to mention the core
objective of articles with metrics, domain and approach used.
Initially, statistical models are mentioned for traffic flow
prediction. Later deep learningmodels are exploredwhich are
promising and still explored deeper describing the stochastic
traffic characteristics in a better way.

III. METHODOLOGY
In this section, we will introduce the GRU model and
present the mechanism to tune its hyperparameters by
describing the proposed algorithm. In this section, we first
describe the time-series prediction problem formulation fol-
lowed by an overview of the GRU network. Then, we will
detail the model to search for optimum values in a defined
universe of discourse. Furthermore, we apply our search
mechanism to optimize the GRU network hyperparameters
and results are obtained on PeMS database for better predic-
tion of results after executing the training mechanism.

A. TIME-SERIES PREDICTION PROBLEM
Given an input sequence X = {x1, x2, . . . , xk} as orig-
inal data, where xiεRd . We choose a sliding window of
length L to define characteristics sequences from original
sequence X such that X = (X1,X2, . . . ,Xk ) where Xi =
(xi, xi+1, . . . , xi+L), where each XpεX ,RL . The historical or
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ground values are given by y = (y1, y2, . . . , yk−1) where
ypεR1. Alternatively, we can denote it by y = {yi : iεT }
where T is called the index set. Our goal here is to predict
the next value denoted by ŷT . We learn a nonlinear function
f by mapping the temporal sequence feature X and its corre-
sponding ground-truth value y to obtain the estimated value
ŷT with the following formulation:

ŷT = f (X , y) (1)

where f is the nonlinear mapping function and learning f our
goal using GRU Neural Network model in this work.

B. THE FRAMEWORK
The proposed neural network optimization framework is
defined below in Fig. 1. Firstly, we draw traffic flow data
from PeMS database (described in data set section in more
details). PeMS contains Internet Of Things (IoT) based
time sequences of traffic data recorded by the road sensors
installed across the highways. Dataset is processed to obtain
univariate traffic flow sequences. Original data is real-time
observations of average traffic flow obtained every 5-minutes
interval. Data is further cleaned up by obtaining hour level
details for simplification and the idea is to reduce the process-
ing costs. Training is then preformed using proposed algo-
rithm for GRU optimization, Network tuning is performed in
order to obtain better set in each iteration and after getting bet-
ter hyperparameters we performed prediction using defined
set of performance metrics to compare the accuracy.

C. THE ALGORITHM
We start by data sequence denoted by X = Fd07−20 which
represents traffic flow time-series data obtained from PeMS
website ranges from 07thJan − 20thJan, 2019 for freeway 9,
district 10, California, USA. L denotes the number of steps of
slidingwindows, η is network learning rate,Xt andXv denotes
the training and validation sets over X . Traffic flow for
Training and Validation sets based Optimization algorithm
requires lower error rate. An algorithm is proposed to fulfill
dual objective, that is, tune the hyperparameters (learning
rate) and search for the sliding window time-step for better
validation and prediction. The input to the algorithm is an
original traffic flow time-series sequences; a set of sliding
window of length L, Learning Rate η from a finite set. We ini-
tialize various seed values for # of neurons of input layer,
activation function, batchwindow size, # of epochs, optimizer
function and loss functions for GRU network. Our goal is
to obtain an optimized set of neural network parameters and
hyperparameters.

D. THE PARAMETER SETTINGS
There are various neural network parameters and hyperpa-
rameters. We have defined finite set of values for each param-
eter for basic GRUmodel. Important network parameters are:
the number of time-lag window steps L and the size of input
neurons and the batch-size b in training process. The size

Algorithm 1 Traffic Flow for Training and Validation Sets
and Optimization Algorithm for Tuning GRU Network
Parameters
Input: Original traffic flow time series Fd07−20; a set of
sliding window of length L, Learning Rate η from finite set.
Output: Optimized GRU model Mt according to validation
set Xv, Training error εt , Validation error εv.

Initialization: Initialize random seed values for # of
neurons, activation function, batch window size, # of epochs,
optimizer and loss functions for GRUnet .

Given: A range for sliding window L ← range(2,Lmax),
and ηε{η1, η2, . . . , ηn}, error threshold εmin = CONSTANT

1: split X into training set Xt and Validation set Xv
2: set Xt ← reshuffle (Xt )
3: set Xv← reshuffle (Xv)
4: set flag← false
5: for each window time-step Lε{2, 3, . . . ,Lmax}; do
6: for each value of learning rate ηε{η1, η2, . . . , ηn}

denoted by iterationη; do
7:

8: assert: L ≥ 2 and Lmax � length(Fd01−31)
9: set Mt ← GRUnet (XLt ,X

L
v , seeds, η)

10: calculate εLt ← trainingloss (Mt )
11: calculate εLv ← validationloss (Mt )
12: if εLt ≤ εmin and ε

L
v ≤ εmin then

13: flag← true
14: break loops
15: else
16: repeat until convergence and set flag← true
17: end if
18: end for
19: end for
20: if flag← true then
21: Proceed with model Mt for GRUnet prediction
22: else
23: repeat experiment with diverse seeds or end the pro-

cess.
24: end if

of hidden neurons for each layers in GRU are kept fix to
64 and 32 respectively in this search experiment. Preview of
the range of values we choose in this experiment for sliding
window steps (L), number of neurons (N), and learning rate
(η), batch size (b), epochs (E) and other parameters are spec-
ified in Table. 2.

IV. EXPERIMENTAL RESULTS
After data is picked up from real-time traffic flow time
series dataset, we used python environment with Anaconda
installed on the Windows 10, 64 bit machine. Experiment
required scikit-learn, Pandas, NumPy and Matplotlib exten-
sion libraries installed.
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TABLE 2. List of hyperparameters & values for GRU optimization.

FIGURE 2. Road segment sensors at Freeway #99, District 10, California,
USA. Source [31].

A. DATASET DESCRIPTION
Experimental data is obtained from Caltrans Performance
Measurements Systems (PeMS) dataset, which offers his-
torical database of traffic flow in California. Data can be
downloaded from the California Department of Transporta-
tion PeMS website [29], The data describes the traffic
flow of different car lanes of San Francisco bay area free-
ways. There are more than 39000 individual sensor detectors
spanning the freeway system across all major metropolitan
areas of the State of California and its dataset is widely
used for researcher to develop and evaluate traffic models.

FIGURE 3. Search experiment for GRU network parameter optimization
and iteration loss graph: settings with activation=’relu’, batch size=64,
dropout=0, epochs=1000, first neuron=256, hidden layers=1, kernel
initializer=’normal’, last activation=’Sigmoid’, loss=’mse’, ’optimizer’:
’Adam’, weight regularizer=None, window steps and learning rate pairs
are specified as: (a) L = 3, η = 0.01, (b) L = 3, η = 0.1, (c) L = 6, η = 0.01,
(d) L = 6, η = 0.1.

The collected traffic data is a 5-min interval for traffic flow
measures of District 10 in the first whole month of 2019.
The collected traffic flow data is divided into two parts,
i.e., training data and test data. The test data is used to
predict traffic flow and evaluate the model’s accuracy. List
of hyperparameters and their values for GRU optimization
experiments are defined in Table. 2.

B. PROCESSING OF TRAFFIC SERIES
In this study, we trust in the data directly obtained in real-time
from PeMS dataset and we draw the data set for evaluation.
We observed no missing points for given time period for the
wholemonth of January 2019. Traffic flow data as time-series
captured for 13 consecutive days, the task is to predict the traf-
fic flow representing number of vehicles after every 5minutes
slot using GRU and other neural networks after obtaining
tuned hyperparameters. The traffic flow data considered for
the District 10 and Freeway 99 and as mentioned ranges
precisely from January 7, 2019 to January 20, 2019 for exper-
iment purpose. We split the dataset into training, validation
and testing subsets with the ratio of 80/20/20 respectively in
the work.

C. ALGORITHM EXECUTION
We can load the dataset using Python Library. Once data
is ready for further processing, we defined various set-
tings to optimize the search for parameters and hyper-
parameters of the network. Important network parameters
are: the number of sliding window steps L and the size
of input neurons, hidden units for each layers in GRU
are set to 64 and 32 respectively. To demonstrate the bet-
ter performance of the model, we conducted a grid like
search mechanism defined in Algorithm 1 over Number
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FIGURE 4. A proposed GRU network configuration used to train the
model.

TABLE 3. Experiment performed to optimize the learning rates: GRU
parameter optimization. Experiment with epochs = 1000, batch size= 64,
first layer neurons = 256, optimization = Adam, and window-length =

6 and performed the search for learning rate η = {0.01, 0.05, 0.1, 0.2, 0.5,
0.8, 1.0}. Learning rate 0.2 performed better.

of neurons in first layer Nε{64, 128, 256, 512, 1024},
sliding-window steps Lε{3, 6, 12, 18, 24}, and learning rate
ηε{0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0}.

D. MODEL CONFIGURATIONS
We used Python computation library for numerical analy-
sis, to build GRU neutral network models and evaluate the
single-step time-series traffic flow prediction performance.
We further used Talos python library to preform initial hyper-
parameters tuning for GRU model optimization along with
our proposed algorithm for tuning window time-steps. The
GRU network is built by four dense layers. Second, third
and fourth layers are kept fixed with 64, 32 and 1 neurons
respectively. A proposed GRU network configuration used to
train the model is presented in Fig. 4. The diagram is built on
an idea from [36]. Preview of the range of values we choose
in this experiment for the network parameters are specified
in Table. 2. Proposed algorithm is applied to obtain a superior
set of learning rate, slidingwindow length, number of neurons
and optimization technique.

We conducted five experiments such that we start with
GRU training& validation optimization framework for PeMS
traffic data ranges from 07-Jan-2019 to 20-Jan-2019 at Free-
way 99, District10, California. In the first step, we per-
formed an open search keeping parameters bounded to
subset values to save processing time. GRU configurations

TABLE 4. Experiment performed to evaluate windows steps: GRU
parameter optimization. Experiment with epochs = 1000, batch size= 64,
first layer neurons= 256, optimization = Adam, and learning rate =

0.2 and performed the search for window length= {3, 6, 12, 18, 24}.
Window-length 12 performed better.

TABLE 5. Experiment #3 performed to evaluate optimization functions:
GRU parameter optimization. Experiment with epochs = 1000, batch
size= 64, first layer neurons= 256, and learning rate= 0.2 and window
length= 6 and optimization = {Adam, Nadam}, ’Adam’ performed better
than ’Nadam’.

used in these experiments are: activation: RELU, loss:
MSE, optimizer: Adam, Last Layer Activation: Sigmoid and
Batch Size: 64 and 256 respectively. We observed follow-
ing set with better performance {η = 0.1,BatchSize =
64, Slidingwindowsteps = 6,Epochs = 100,Neurons =
256}. Next experiment (Table. 3) is conducting with already
searched best settings found in previous step. we set the
number of learning rate in each row as the η. We deliberately
kept now one parameter variable, the others are fixed - in this
case the learning rate ηε{0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0}.
The experiment results in obtaining η = 2 performed better
than others. Next experiment (Table. 4) is performed with
already searched best settings found till previous step. We set
L as the number of sliding window steps ahead used in each
row. We kept one parameter as variable, the others are kept
fixed - in this case the window steps Lε{3, 6, 12, 18, 24}. The
experiment results in obtaining L = 12 performed better
than others on proposed dataset. Eventually, last experiment
(Table. 5) is performed with already searched best settings by
evaluating the two optimizer functions ’Adam’ and ’Nadam’.
We found that the optimizer ’Adam’ performed better than
’Nadam’. An experiment is illustrated in Fig. 3 to perform
a search tuning learning rate and time-windows steps for
the GRU network. An illustration of time-series is presented
in Fig. 8 presenting the traffic-flow (number of Vehicles)
ranges from January 7, 2019 to January 20, 2019 at Freeway
99, District 10, California. Red line represents actual data and
green line is GRU prediction using sliding window mecha-
nism proposed in this work.

E. COMPUTATIONAL ANALYSIS
Both LSTM and GRU are widely known variants of RNN.
They are used for traffic flow prediction using temporal
dependency. This process uses time-lags or sliding window
that essentially feed the data to neural network step by step.
Having used the various deep learning variants of LSTM,
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FIGURE 5. Average performance gain of models for traffic prediction with
optimized parameter settings. Abbreviations: GRU, gated recurrent unit;
ARIMA, autoregressive integrated moving average; VLSTM, vanilla long
short-term memory; SLSTM, stacked LSTM; BLSTM, bidirectional LSTM;
CLSTM, a Convolutional LSTM Network.

FIGURE 6. Mean absolute error of models for traffic prediction with
optimized parameter settings.

we presented to compare accuracy and computation time
during training by using the fine-tuned hyperparameters for
vanilla LSTM, Stacked LSTM, bidirectional LSTM andGRU
models. These models are used to process the time series
traffic data and predict the traffic flow. Training time for
different models is presented in following graph with Fig. 7.
We can observe that GRU possess training time lesser that
other models. This is because GRU by virtue of design is
a simpler model with lesser number of gates. Bidirectional
LSTM model performed badly with traffic time-series based
data due to the reason of processing data in two directions.

F. EVALUATION METRICS
To evaluate the effectiveness of the proposed GRU method,
we used three performance metrics: the mean absolute error
(MAE), the root mean square error (RMSE) and the mean
absolute percentage error (MAPE). MAPE is the sum of the
individual absolute errors divided by the demand (each period
separately). It is the average of the percentage errors. The
Mean Absolute Error (MAE) is a popular KPI to measure
forecast accuracy and is the mean of the absolute error. The
Root Mean Squared Error (RMSE) is another KPI, very

FIGURE 7. Training time (in seconds) of the models for traffic prediction
with optimized parameter settings.

helpful in time-series predictions and is defined as the square
root of the average squared error. Below is the mathematical
expression of these measures. eT = ŷT −yT in below expres-
sions is the error defined by the difference between predicted
value and ground truth. The mathematical expression is the
three metrics RMSE, MAE and MAPE are represented by
following equations: [1], [21]

RMSE =

√√√√1
n

n∑
t=1

e2T =

√√√√1
n
∗

n∑
t=1

(ŷT − yT )
2

(2)

MAE =
1
n

n∑
t=1

|eT | =
1
n
∗

n∑
t=1

|ŷT − yT | (3)

MAPE% =
100
n

n∑
t=1

∣∣∣∣eTyT
∣∣∣∣ = 100

n
∗

n∑
t=1

∣∣∣∣∣ ŷT − yTyT

∣∣∣∣∣ (4)

Evaluation results are presented in Table. 6, we compared
Gated recurrent unit, Autoregressive integrated moving aver-
age, Vanilla LSTM,Bidirectional LSTM, Stacked LSTM, and
CNN-LSTM. AVG1 represents the average value of RMSE,
MAPE and MAE measures for the experiment conducted to
determine traffic prediction with common or untuned param-
eter settings. Similarly, AVG2 represents the average value of
RMSE,MAPE andMAE for the experiment traffic prediction
with optimized parameter settings. We presented the Gain in
average error by following expression:

Gain = |AVG2
− AVG1

| (5)

The error eT can be a positive or negative depending
upon the forecast overshoots or undershoots the ground truth,
however, in these measures we are more interested in the
error magnitude. To evaluate the performance of Proposed
model, we tend to use four effectiveness metrics. Various
traffic prediction research articles use unanimous set of eval-
uation metrics because it is an intricate task [37]. The most
common metrics are RMSE, MAPE and MAE. A problem
with them is that they fail to provide comparable measures
when data is multi-dimensional, and complexities of the net-
work models taken in experiment are divergent [38]. Another
aspect is about spatio-temporal nature of the traffic data,
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TABLE 6. Evaluation performed for prediction accuracy of various models. Test performed on hourly Traffic flow ranges from January 7 to 20 at Freeway
#99, District 10, California. Traffic data with random setting is: No. of Neurons in first layer: 64, window steps: 2, Epochs: 1000, Batch size: 128 and
Learning rate: 0.01. Traffic data with optimized hyperparameters setting is: No of Neurons in first layer: 256, window steps: 6, Epochs: 1000, Batch size:
64 and Learning rate: 0.2. After tuning network parameters - the prediction accuracy is the network models increased significantly.

when trained with the neural network models, errors can
possibly propagate through time and space dimensions during
training. Therefore, proposing a measure like average error
gain is a motivation to help measuring model’s performance
by describing a diversified correlation. Results are presented
with the gain measure obtained for all of the six deep learning
models described in the next sub-section.

G. PREDICTION RESULTS AND COMPARISON OF MODELS
Wementioned in the previous section - to obtain better param-
eters from the sample space, we performed five successive
experiments on the GRU model. We performed the search
using hourly samples to reduce the processing cost instead
of original 5-minutes observations found at PeMS traffic
data. Assuming that the parameters will perform well for
other DL models which use similar sliding window tech-
nique for prediction, we tested our approach with six models:
GRU, Vanilla LSTM, Stacked LSTM, Bidirectional LSTM,
CNN-LSTM and ARIMA. The first experiment is conducted
as follows: The performance comparison with different pre-
diction models before tuning of hyperparameters is per-
formed by choosing a random setting from the sample space
such that: No. of Neurons in first layer 64, window steps 2,
Epochs 1000, Batch size 128 and Learning rate 0.01. For
efficient measurement we evaluated three metrics: RMSE,
MAPE, andMAE. The second experiment is performed using
the optimized hyperparameters obtained after the execution
of the intended algorithm.After using optimized hyperparam-
eters values to verify the prediction of six network models,
we found the accuracy is increased. this is presented in Fig. 5
and Fig. 6 as graph. We used following fine-tuned parameter
values to perform the second prediction test: No of Neurons
in first layer 256, window steps 6, Epochs 1000, Batch size
64 and Learning rate 0.2. We can observe the prediction
accuracy of various models increases by using tuned hyper-
parameters and tuned sliding window length obtained for
GRU network. Results are presented with the gain measure
obtained for all of the six models. Results show that average
gain value for the optimized GRU is higher than the normal
untuned model with a relative improvement of 4.5% and is

FIGURE 8. Detail of Average Traffic flow (number of Vehicles) ranges from
January 7, 2019 to January 20, 2019 at Freeway #99, District 10, California.
Red line represents actual data and green line is GRU prediction using
sliding window mechanism to obtain performance metrics.

compared with rest of the neural network models presented
in Table. 6.

V. CONCLUSION AND FUTURE WORK
In this paper, we presented the fundamentals of the GRU
network and proposed a hyperparameter optimization anal-
ysis coupled with window steps tuning for time series pre-
diction. We addressed the advantage of starting with a simple
search and progressively narrow down subsequent searches
keeping one parameter variable and others fixed. To search
for better parameter sets from sample space, we conducted
five experiments in series. Results show a higher capability
of the proposed method to reduce the error and an average
gain of the optimized network over the normal model is 4.5%.
After obtaining the refined parameter sets, we performed tests
on various models in order to achieve accuracy and stability.
The proposed GRU parameter optimization algorithm helps
to search the suitable parameter combinations that minimize
the error metrics; RMSE, MAPE and MAE measure 7.13,
5.93 and 3.47 respectively. This paper further verifies the
applicability and validity of the proposed model. The best
value of performance gain is provided by GRU model then
comesARIMA andCNN-LSTMmodels with the Gain values
4.50, 3.42 and 3.29 respectively.

A potential candidate for future work might be to feed
the network the historical temporal information with external
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factors like non-recurrent events coupled with traffic flow to
reduce error and further, we can tune the hyperparameters
of the network and benchmark the prediction accuracy in
defined scenarios. Secondly, we may explore spatial and
temporal features using graph-based convolution. Graph con-
volution will be our next area of exploration for prediction
improvements.
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